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Learning Objectives ANMIN

After participating in this session the learner should be better able to:
* To understand how to define positive anchors for learning clinical concepts
» To understand how to utilize these concepts for downstream tasks such as risk prediction
* To apply and analyze survival analysis models to predict risk when patient data is censored
» To evaluate models in a back-testing framework and analyze performance over time

* To understand risk factors for severe COVID-19
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As COVID-19 becomes endemic... NMIN

Hospitals will continue to need to be prepared for COVID-19 patients.

Of particular interest: patients likely to progress to severe COVID-19
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Goal: Predict COVID-19 patients’ risk of progressing to severe COVID-19.
Challenges:
» Under-coded features that degrade the accuracy of smaller models
« Many features (more accurate) vs. fewer features (more aligned w/ clinical intuition)

« A constantly evolving environment (new treatments, policies, variants, etc.)



Contributions NMIN

» We develop two sets of high-performance risk scores:
1. unconstrained risk prediction model built from all available features

2. pipeline that first learns a small set of concepts anchored to clinical intuition

* Learned concepts:
» boost performance over the corresponding features

« demonstrate improvements over all available features when evaluated out-of-
sample (in subsequent time periods)

*  Our models outperform previous works (C-index 0.84-0.87 vs. 0.60-0.81)

» Interactive visualization tool (Sankey diagram) for understanding clinical concepts and
their relation to predicted outcomes
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Cohort, Outcome, Features NAMIN

Retrospective observational data collected from Jan 2020—Jan 2022
by a major healthcare provider in Southwestern Pennsylvania

Cohort (n = 31,336) of individuals testing positive for the first time (%))

Severe COVID-19 outcome (mechanical ventilation, ICU admission, or death)

Survival outcome (time-to-event) defined relative to f,

Features (also defined relative to ty):

Location (inpatient vs. outpatient) * Vaccines
Demographics  Symptoms
Labs * Problem history

Medications



Cohort Characteristics NMIN

Characteristic Count (%) Characteristic Count (%)

Female 17,874 (57.0%) Inpatient 13,246 (42.3%)
Location o

Male 13,455 (42.9%) of test Outpatient 15,868 (50.6%)
Under 20 2,836 (9.1%) Unknown 2,222 (7.1%)

20—30 3,987 (12.7% Severe COVID-19 5,272 (16.8%)

30—40 4,134 (13.2% ICU Admission 4,811 (15.4%)
Death 1,554 (5.0%)

50—60 5,444 (17.4%
60—70 5,017 (16.0%

)
)

40—50 4,155 (13.3%)
) Mechanical ventilation 1,096 (3.5%)
)




Motivation for Learning Clinical Concepts /AAMIN

In EHRs, potential risk factors are often recorded indirectly or unreliably

We often observe the presence of a clinical condition but not its absence
(e.g. “diabetes” ICD code - diabetes, but unmarked not necessarily non-diabetic)

Models learned automatically often end up using proxies that indirectly encode
important risk factors (e.g. saline IV bolus encoding inpatient status)

One could manually map these proxies, but it is difficult to be comprehensive

Instead, we use the anchor-and-learn framework (Halpern et. al. 2016) to learn
clinical concepts corresponding to major risk factors

These clinical concepts are then used for downstream risk prediction


https://pubmed.ncbi.nlm.nih.gov/27107443/

PU Algorithm for Learning Concepts ANMIN

For each (unobserved) binary concept y. of interest, define

» Anchor: an observed feature conditionally independent of all other features
conditioned on the concept, i.e. p(x.|ly, = 1) = p(x.|y, = 1, xz)

» Positive anchor: anchor x. whose presence almost certainly implies the presence of
the concept y,. (e.g. diabetes ICD code - diabetes concept)

Consider the probability of a positive anchor x,. given the other observed covariates:
p(xc = 1]xz)
=px.=1Ay. =1 xz)

=py. = lxz)p(x. = 1y, = 1, x¢)
=p(e = Lxz)p(xc = 1y = 1)
= p(y = 1lxz) = p(x. = 1lx¢) /6., where 6. = p(x, = 1]y, =1)



= p(y = 1lxz) = p(x. = 1]x¢) /6,

= The probability of
positive vs. negative

is proportional to

the probability of
positive vs. unlabeled!




PU Algorithm for Learning Concepts ANMIN

= p(y. = 1|xz) = p(xc = 1|x¢) /6., where 6. = p(x, =1ly. =1)

“Anchor-and-learn” Framework: For each binary concept y,. of interest,

1.
2.

|ldentify some key informative observations x. (positive anchors) for the concept

Learn a positive vs. unlabeled (PU) logistic regression classifier g(xz) for the
probability of positive anchor given other covariates, i.e. p(x, = 1|x;z).

Estimate scaling constant 6. = p(x. = 1|y, = 1) by averaging predictions on all
oy .o 1
positive examples P, that is: 6, = ;Zxéepg(xg)

Scale predictions from PU classifier by constant: p(y. = 1|xz) = g(xz) /6,



Identifying Clinical Concepts of Interest ANMIN

Clinician survey results:

1. Old age 8. Fatigue 15. Congestive heart failure
2. Inpatient 9. COVID-19 vaccination  16. Chronic kidney disease
3. Outpatient 10. Flu vaccination 17. Hyperglycemia

4. Diabetes 11. Obesity 18. Transplant

5. Shortness of breath 12. Hypertension 19. Cancer

6. Fever 13. Immunocompromised 20. Lung disease

7. Cough 14. COPD 21. Myalgia

After identifying these concepts, we identify corresponding positive anchors through
string matching and clinician recommendations. Then, we proceed with PU learning.
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Patients are often censored — it's unknown what happened to them past a certain time
point (e.g. discharge). Thus, we use survival analysis methods, as we are interested in a
time-to-event (“event” = severe COVID-19 or censoring)

Cox proportional hazards h(t) = hy(t) exp(XB)

with L1 regularization (Lasso-Cox) 7\|IBI|1

(A selected using grid search with 5-fold cross validation, optimizing for discriminative
ability as measured by concordance, or C-index)



Experimental Setup: Feature Sets AMI/N

Lasso-Cox models learned from five different feature sets:

1. Raw positive anchors: without learning the corresponding clinical concepts
Learned concepts (LC): only the concepts from PU learning
LC + Numeric: learned concepts + numerical features

2
3
4. LC + All features: learned concepts + all of the original 139 features
5

All features: all 139 original features, no learned concepts



Experimental Setup: Data Splits AMIN

As data continues to be generated, hospitals may use new data to update their models
over time.
« Performance over time setup:

» Re-train models up to the end of each season (spring, summer, fall, winter)

« Evaluate on subsequent seasons

« 70-30 split to create train/test sets for each 3-month period

« Standard setup:
* In addition, we train a model on the entire study time range
« Train and test sets aggregate the respective 3-month datasets
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Results: Learned Concepts AMI/N

Number of Positives for each Learned Concept
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Interactive Sankey Diagram

NA\MIN
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Results: Hazard Ratios NMIN

All Features + LCs
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Calibration

LC + All Features at 14 days

D-Calibration of LC + All Features
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Kaplan Meier Survival Curves
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LC + All Features Model
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Results: Aggregate Performance AMIN

Aggregate Inpatient Outpatient
| i | i | o
0.60 (0.58-0.62) 0.58 (0.57-0.60) 0.55 (0.51-0.58)
0.75 (0.73-0.76) 0.65 (0.63-0.66) 0.71 (0.68-0.75)
0.81 (0.80-0.82) 0.70 (0.67-0.70) 0.76 (0.73-0.71)
0.84 (0.84-0.85) 0.67 (0.65-0.68) 0.76 (0.71-0.80)
0.86 (0.85-0.87) 0.70 (0.69-0.71) 0.80 (0.76-0.83)
0.86 (0.85-0.87) 0.70 (0.68-0.71) 0.81 (0.78-0.85)
0.87 (0.87-0.88) 0.72 (0.70-0.73) 0.88 (0.86-0.90)
0.87 (0.87-0.88) 0.72 (0.70-0.73) 0.88 (0.86-0.90)



Back-testing

All Features + LCs

e Simulated deployment date
—— Subsequent performance
All Features
— e e
LCs
Sprling Sumlmer Fe;ll Winlter Sprling Sumlmer Falll Winlter
2020 2020 2020 2020 2021 2021 2021 2021

Test Time

Trained until
Spring 2020

Trained until
Winter 2021
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Models trained in Spring 2020:

Feature

Set

All Features
+ LCs

All Features

LCs

0.79

0.84

0.80

0.88

0.85

0.90
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Learned concepts anchored to clinical intuition

Utilized learned concepts for downstream severe COVID-19 prediction
Including all features boosts test performance when evaluated in aggregate
But learned concepts resulted in more robust performance over time

Visualization tool for examining precisely how the concepts are formed
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Thank you!

Email me at:
hizhou@cmu.edu




