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Abstract
Machine learning (ML) models deployed in
healthcare systems must face data drawn from
continually evolving environments. However,
researchers proposing such models typically
evaluate them in a time-agnostic manner, split-
ting datasets according to patients sampled ran-
domly throughout the entire study time period.
This work proposes the Evaluation on Medi-
cal Datasets Over Time (EMDOT) framework,
which evaluates the performance of a model
class across time. Inspired by the concept of
backtesting, EMDOT simulates possible train-
ing procedures that practitioners might have
been able to execute at each point in time and
evaluates the resulting models on all future time
points. Evaluating both linear and more com-
plex models on six distinct medical data sources
(tabular and imaging), we show how depending
on the dataset, using all historical data may be
ideal in many cases, whereas using a window of
the most recent data could be advantageous in
others. In datasets where models su↵er from
sudden degradations in performance, we inves-
tigate plausible explanations for these shocks.
We release the EMDOT package to help facili-
tate further works in deployment-oriented eval-
uation over time.

Data and Code Availability We use the follow-
ing data: (1) the Surveillance, Epidemiology, and
End Results (SEER) cancer dataset (National Can-
cer Institute, 2020), (2) the COVID-19 Case Surveil-
lance Detailed Data provided by the CDC (Cen-
ters for Disease Control and Prevention, 2020), (3)
the Southwestern Pennsylvania (SWPA) COVID-19
dataset, (4) the MIMIC-IV intensive care database
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(Johnson et al., 2021), (5) the Organ Procurement
and Transplantation Network (OPTN) database for
liver transplant candidates (Organ Procurement and
Transplantation Network, 2020), and (6) the MIMIC-
CXR-JPG database of chest radiographs (Johnson
et al., 2019a,b). MIMIC-IV and MIMIC-CXR-JPG
(referred to as MIMIC-CXR in this paper) are avail-
able on the PhysioNet repository (Goldberger et al.,
2000). Except for the SWPA dataset, all are publicly
accessible (after accepting a data usage agreement).
Details for accessing each dataset are in Appendices
C–G. The code is publicly available on GitHub.

Institutional Review Board (IRB) This re-
search does not require IRB approval.

1. Introduction

As medical practices, healthcare systems, and com-
munity environments evolve over time, so does the
distribution of collected data. Features are depre-
cated as new ones are introduced, data collection may
fluctuate along with hospital policies, and the under-
lying patient and disease populations may shift.

Amidst this ever-changing environment, models
that perform well on one time period cannot be as-
sumed to perform well in perpetuity. In the MIMIC-
III critical care dataset, Nestor et al. (2019) found
that a change to the electronic health record (EHR)
system in 2008 coincided with sudden degradations in
AUROC for mortality prediction. In COVID-19 data
from the Centers for Disease Control and Prevention
(CDC), Cheng et al. (2021) noted that the age dis-
tribution among cases shifted continually throughout
the pandemic, and that these continual shifts con-
founded estimates of improvements in mortality rate.
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We propose an evaluation framework to charac-
terize model performance over time by simulating
training procedures that practitioners could have ex-
ecuted up to each time point, and subsequently de-
ployed in future time points. We argue that stan-
dard time-agnostic evaluation is insu�cient for se-
lecting deployment-ready models, showing across sev-
eral datasets that it over-estimates deployment per-
formance. Instead, we advocate for EMDOT as a
worthwhile pre-deployment step to help practitioners
gain confidence in the robustness of their models to
shifts in the data distribution that have occurred in
the past and may to some extent repeat in the future.

There is a large body of work that addresses
adaptation under various structured forms of distri-
bution shift, including covariate shift (Shimodaira,
2000; Zadrozny, 2004; Huang et al., 2006; Sugiyama
et al., 2007; Gretton et al., 2009), label shift (Saerens
et al., 2002; Storkey, 2009; Zhang et al., 2013; Lip-
ton et al., 2018; Garg et al., 2020), missingness shift
(Zhou et al., 2022a), and concept drift (Tsymbal,
2004; Gama et al., 2014). However, in the real-world
medical datasets we analyze, none of these structural
assumptions can be guaranteed, and distributional
changes in covariates, labels, missingness, etc. could
even occur simultaneously. This motivates our em-
pirical work, as it is unclear across a variety of model
classes and medical datasets, how existing models
might degrade due to naturally occurring changes
over time, and whether di↵erent training practices
might impact on robustness over time.

However intuitive it might seem, evaluation of
models over time remains uncommon in standard ma-
chine learning for healthcare (ML4H) research. In the
proceedings of the Conference on Health, Inference,
and Learning (CHIL) 2022, for example, none of the
23 papers performed evaluations which took time into
account (see Appendix A for similar statistics from
CHIL 2021 and the Radiology medical journal). One
possible reason for this is lack of access—as noted by
Nestor et al. (2019), it is common practice to remove
timestamps when de-identifying medical datasets for
public use. In this work, we identify six sources of
medical data containing varying granularities of tem-
poral information per-record, five of which are pub-
licly available. We profile the performance of vari-
ous training strategies and model classes across time,
and identify possible sources of distribution shifts
within each dataset. Finally, we release the Eval-
uation on Medical Datasets Over Time (EMDOT)
Python package (details in Appendix B) to allow re-

searchers to apply EMDOT to their own datasets and
test techniques for handling shifts over time.

2. Related work

The promise of ML for improving healthcare has been
explored in several domains, including cancer sur-
vival prediction (Hegselmann et al., 2018), diabetic
retinopathy detection (Gulshan et al., 2016), antimi-
crobial stewardship (Kanjilal et al., 2020; Boomi-
nathan et al., 2020), recognizing diagnoses from elec-
tronic health record data (Lipton et al., 2016), and
mortality prediction in liver transplant candidates
(Bertsimas et al., 2019; Byrd et al., 2021). Typically,
these ML models are evaluated on randomly held out
patients, and sometimes externally validated on other
hospitals or newly collected data. Even with cross-
site validations, we cannot be sure how models will
perform in the future.

For decades, the medical community has had a his-
tory of utilizing (mostly) fixed, simple risk scores to
inform patient care (Hermansson and Kahan, 2018;
Kamath et al., 2001; Wilson et al., 1998; Wells et al.,
1995). Risk scores often prioritize ease-of-use, are
computed from few variables, verified by domain ex-
perts for clear causal connections to outcomes of in-
terest, and validated through use over time and across
hospitals. Together, these factors give clinicians con-
fidence that the model will perform reliably for years
to come. With increasingly complex models, how-
ever, trust and adoption may be hindered by a lack
of confidence in robustness to changing environments.

As noted by D’Amour et al. (2022), ML models
often exhibit unexpectedly poor behavior when de-
ployed in real-world domains. A key reason for these
failures, they argue, is under-specification, where
ML pipelines yield many predictors with equivalently
strong held-out performance in the training domain,
but such predictors can behave very di↵erently in de-
ployment. By testing performance across a variety of
distribution shifts that have previously occurred over
time, EMDOT could serve as a stress test to help
combat under-specification.

Although evaluation over time is far from stan-
dard in ML4H literature, changes in performance
over time have been noted in prior work. To pre-
dict wound-healing, Jung and Shah (2015) found that
when data were split by cuto↵ time instead of pa-
tients, benefits of model averaging and stacking dis-
appeared. Pianykh et al. (2020) found degradation
in performance of a model for wait times dependent
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on how much historical data was trained on. To pre-
dict severe COVID-19, Zhou et al. (2022b) found that
learned clinical concept features performed more ro-
bustly over time than raw features. Closest to our
work is Nestor et al. (2019), which evaluated AU-
ROC in MIMIC-III critical care data from 2003–2012,
comparing training on just 2001–2002; the prior year;
and the full history. Using the full history and cu-
rated clinical concepts, they bridged a big drop in
performance due to changing EHR systems. Whereas
Nestor et al. (2019) considers three models per test
year, EMDOT simulates model deployment every
year and evaluates across all future years.
While we do not consider time series models in this

work (instead considering those which treat data as
i.i.d.), there are similarities between how training sets
are defined in EMDOT and in techniques for eval-
uating time-series forecasts (Bergmeir and Beńıtez,
2012; Cerqueira et al., 2020). These techniques often
roll forward in time, taking either a window of recent
data or all historical data as training sets, and evalu-
ate test performance on the next time point. Perfor-
mance from each time point is then averaged to sum-
marize performance. This type of back-testing tech-
nique is common in rapidly evolving, non-stationary
applications like finance (Chauhan et al., 2020; Al-
berg and Lipton, 2017), where time series models are
constantly updated. In the healthcare domain, how-
ever, models may not be so easily updated, with risk
scores developed several years ago still being used to
this day (Six et al., 2008; Kamath et al., 2001; Wilson
et al., 1998; Wells et al., 1995). Thus, we track perfor-
mance not only the immediate year after the training
set, but all subsequent years in the dataset. Addition-
ally, instead of collapsing performance from models
trained at di↵erent time points into summary statis-
tics, which could conceal distribution shifts over time,
our framework tracks these granular fluctuations over
time, and creates tools to help provide insight into the
nature and potential causes of such changes.

3. Data

We sought medical datasets that had: (1) a times-
tamp for each record, (2) interesting prediction
task(s), and (3) enough distinct time points to eval-
uate over. Six data sources satisfied these criteria:
SEER cancer data, national CDC COVID-19 data,
COVID-19 data from a healthcare provider in South-
western Pennsylvania (SWPA), MIMIC-IV critical
care data, OPTN data from liver transplant can-

didates, and MIMIC-CXR chest radiographs. All
datasets are tabular except for MIMIC-CXR (medical
imaging data). All but SWPA are publicly accessible.

Table 1 summarizes the dataset outcomes, time
ranges, and number of samples. Figure 1 visualizes
data quantity over time. Appendices C–H include
cohort selection diagrams, cohort characteristics, fea-
tures, heat maps of missingness, preprocessing steps,
and additional details. Categorical variables are con-
verged to dummies, and numerical variables are nor-
malized and centered at 0. Missing values in categor-
ical variables are treated as another category, and in
numerical variables they are imputed with the mean.
In all datasets except MIMIC-CXR (where each sam-
ple is a distinct radiograph), each sample corresponds
to a distinct patient.

3.1. SEER Cancer Data

The Surveillance, Epidemiology, and End Results
(SEER) Program collects cancer incidence data from
registries throughout the U.S. Each case includes de-
mographics, primary tumor site, tumor morphology,
stage, diagnosis, first course of treatment, and sur-
vival outcomes (collected with follow-up) (National
Cancer Institute, 2020). We use the SEER⇤Stat soft-
ware (Program, 2015) to define three cohorts of inter-
est: (1) breast cancer, (2) colon cancer, and (3) lung
cancer. The outcome is 5-year survival, i.e. whether
the patient was confirmed alive five years after the
year of diagnosis. The amount of data has mostly in-
creased each year (Figure 1). Performance over time
is evaluated yearly. See Appendix C for more details.

3.2. National CDC COVID-19 Data

The COVID-19 Case Surveillance Detailed Data
(Centers for Disease Control and Prevention, 2020)
is a national dataset provided by the CDC. It has the
largest number of samples among the datasets con-
sidered, and contains 33 elements, with patient-level
data including symptoms, demographics, and state
of residence. The cohort consists of all lab-confirmed
positive COVID-19 cases that were hospitalized, so
the quantity of samples over time has a seasonality re-
flecting surges in COVID-19 (Figure 1). The outcome
of interest is mortality, defined by death_yn = Yes

in the dataset. Performance over time is evaluated on
a monthly basis. See Appendix D for more details.

2. In MIMIC-CXR, all labels except “No Finding” are con-
sidered positive for the purposes of Figure 1 and Table 1.
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Table 1: Summary of datasets used for analysis. For more details, see Appendices C–G.

Dataset name Outcome Time Range (time point unit) # samples # positives

SEER (Breast) 5-year Survival 1975–2013 (year) 462,023 378,758
SEER (Colon) 5-year Survival 1975–2013 (year) 254,112 135,065
SEER (Lung) 5-year Survival 1975–2013 (year) 457,695 49,997
CDC COVID-19 Mortality Mar 2020–May 2022 (month) 941,140 190,786
SWPA COVID-19 90-day Mortality Mar 2020–Feb 2022 (month) 35,293 1,516
MIMIC-IV In-ICU Mortality 2009–2020 (year) 53,050 3,334
OPTN (Liver) 180-day Mortality 2005–2017 (year) 143,709 4,635
MIMIC-CXR 14 diagnostic labels 2010–2018 (year) 376,204 209,088

Figure 1: Number of samples and positive2outcomes
per time point.

3.3. SWPA COVID-19 Data

The Southwestern Pennsylvania (SWPA) COVID-19
dataset consists of EHR data from patients tested for
COVID-19. It is the smallest dataset considered in
this paper, and was collected by a major healthcare
provider in SWPA. Features include patient demo-
graphics, labs, problem histories, medications, inpa-
tient vs. outpatient status, and other information
collected in the patient encounter. The cohort con-
sists of COVID-19 patients testing positive for the
first time, and not already in the ICU or mechanically
ventilated. Similar to the CDC COVID-19 dataset,
there is a seasonality to the monthly number of sam-
ples that reflects surges in COVID-19 (Figure 1). The
outcome of interest is 90-day mortality, derived by
comparing the death date and test date. The perfor-

mance over time is evaluated on a monthly basis. See
Appendix E for more details.

3.4. MIMIC-IV Critical Care Data

The Medical Information Mart for Intensive Care
(MIMIC)-IV (Johnson et al., 2021) database con-
tains EHR data from patients admitted to critical
care units from 2008–2019. MIMIC-IV is an update
to MIMIC-III, adding time annotations placing each
sample into a three-year time range, and removing
elements from the old CareVue EHR system (before
2008). We approximate the year of each sample by
taking the midpoint of its time range, but note that
this causes certain years (2009, 2012, 2015, 2018) to
have substantially more samples than others (Figure
1). The cohort is selected by taking the first en-
counter of all patients in the icustays table, and
the outcome of interest is in-ICU mortality. Perfor-
mance over time is evaluated on a yearly basis. See
Appendix F for more details.

3.5. OPTN Liver Transplant Data

The Organ Procurement and Transplantation Net-
work (OPTN) database tracks organ donation and
transplant events in the U.S. The selected cohort con-
sists of liver transplant candidates on the waiting list.
The same pipeline as Byrd et al. (2021) is used to ex-
tract the data, except that the first record is selected
for each patient. The outcome of interest is 180-day
mortality from when the patient was added to the
list. The performance over time is evaluated on a
yearly basis. More details are in Appendix G.

3.6. MIMIC-CXR

The MIMIC Chest X-ray (MIMIC-CXR) JPG
dataset (Johnson et al., 2019b) contains chest radio-
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graphs in JPG format. Similar to MIMIC-IV, we
approximate the year by taking the midpoint of its
three-year time range. The selected cohort consists
of all radiographs from 2010 to 2018. The outcomes
of interest are 14 diagnostic labels: Atelectasis, Car-
diomegaly, Consolidation, Edema, Enlarged Cardio-
mediastinum, Fracture, Lung Lesion, Lung Opacity,
Pleural E↵usion, Pneumonia, Pneumothorax, Pleu-
ral Other, Support Devices, and No Finding. Perfor-
mance over time is evaluated on a yearly basis. More
details are in Appendix H.

4. Methods

We tackle the following guiding questions:

1. On each dataset, what would the reported per-
formance of a model be if it were trained using
standard time-agnostic splits (all-period)?

2. Simulating how a practitioner might have
trained and deployed models in the past, how
would performance have varied over time?

3. When might it be better to train on a recent
window of data versus all historical data?

4. What is the comparative performance of di↵er-
ent classes of models over time?

5. To what extent might we be able to diagnose pos-
sible reasons for changes in model performance?

4.1. All-period Training

We mimic common practice in evaluation by using
time-agnostic data splits which randomly place pa-
tients from the entire study time range into train,
validation, and test sets (details in Appendix L), and
reporting the test set performance. We refer to train-
ing with this type of split as all-period training.

4.2. EMDOT Evaluation

For more realistic simulation of how practitioners
train models and subsequently deploy them on future
data, we define the Evaluation on Medical Datasets
Over Time (EMDOT) framework. At each time
point t (termed simulated deployment date), an in-
period subset of data from times  t is available for
model development. After training a model on this
in-period data, one might be interested in both recent
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Figure 2: EMDOT training regimes, with a simu-
lated deployment date of t = 6.

in-period performance (at time t) and future out-of-
period performance (at times > t).

In-period data is split into train, validation, and
test sets (split ratios in Appendix L). For MIMIC-
CXR, where one patient could have multiple radio-
graphs, the data is split such that there are no over-
lapping patients between splits. Recent in-period
performance is evaluated on held-out test data from
the most recent time point. Out-of-period perfor-
mance is evaluated on all data from each future time
point. For example, a model trained up to time
6 is tested on data from 6, 7, 8, etc. (Figure 2).
At time 8, the model is considered two time points
stale. Although this procedure can take O(T ) times
more computation than all-period training for T time
points, we argue that this procedure yields a more re-
alistic view of the type of performance that one might
expect models to have over time.

Additionally, practitioners face a tradeo↵ between
using recent data perhaps most reflective of the
present and using all available historical data for a
larger sample size. Intuitively, the former may be ap-
pealing in modern applications with massive datasets,
whereas the latter may be necessary in data-scarce
applications. We explore these two training regimes,
with di↵erent definitions of in-period data (Figure 2):

1. Sliding window: The last W time points are
considered in-period. In this paper, we use win-
dow size W = 4 for su�cient positive examples.

2. All-historical: Any data prior to the current
time point is considered in-period.

To decouple the e↵ect of sample size from that
of shifts in the data distribution, comparisons are
also performed with all-historical data that is sub-

5



Evaluating Model Performance in Medical Datasets Over Time

sampled to be the same size as the corresponding
training set under the sliding window training regime.
To summarize more formally, let Dt refer to the

set of all data points occurring at time t 2 {1, ..., T},
where T is the number of time points that the dataset
spans. Each Dt can be partitioned by splitting pa-
tients at random into disjoint train, validation, and
test sets: Dt = D

train

t [ D
val

t [ D
test

t . For simulated
deployment dates t

⇤ 2 {W,W + 1, ..., T}, training,
validation, and test sets are defined for the sliding
window training regime as follows:

• training:
St⇤

k=t⇤�W+1
D

train

k

• validation:
St⇤

k=t⇤�W+1
D

val

k

• in-period test: Dtest

t⇤

• out-of-period test: Dk for k = t
⇤ + 1, ..., T

Training, validation, and test sets are defined for
the all-historical training regime as follows:

• training:
St⇤

k=1
D

train

k

• validation:
St⇤

k=1
D

val

k

• in-period test: Dtest

t⇤

• out-of-period test: Dk for k = t
⇤ + 1, ..., T

At each simulated deployment date t
⇤, models are

trained using the training set, validated using the val-
idation set, and tested on the in-period test set as well
as all out-of-period test sets. If a model with simu-
lated deployment date t

⇤ is being evaluated on an
out of period test set Dt⇤+j , then the model is j time
points stale.

4.3. Evaluation Metrics

All binary classification tasks are evaluated by AU-
ROC. For multi-label prediction in MIMIC-CXR,
each of the 14 diagnostic labels is treated as a sep-
arate binary classification task, and a weighted sum
of AUROCs is computed, where the weight for a par-
ticular label is given by the proportional prevalence
of that label among all positive labels. That is, for
some class a, its weight is pa/

P
x px, where px is the

number of positives with label x. Samples are treated
in an i.i.d. manner for training.

4.4. Models

Logistic regression (LR), gradient boosted deci-
sion trees (GBDT) and feedforward neural net-
works (MLP) are trained on the tabular datasets.
DenseNet-121 is trained on the MIMIC-CXR imag-
ing dataset. Hyperparameters are selected based on
in-period validation performance, and the hyperpa-
rameter grids are in Appendix M.

4.5. Detecting Sources of Change

To better understand possible reasons for chang-
ing performance, we create diagnostic plots to track
model performance alongside changes in the data dis-
tribution over time.

In tabular datasets, we plot feature importances
and average values of the most important features
over time. Generating these plots for logistic re-
gression, we define feature importance by the mag-
nitudes of the coe�cients, but note that other fea-
ture importance techniques could be used for more
complex model classes. To avoid overcrowding the
plots, we take the union of the top k most impor-
tant features from each time point is taken, where k

is tuned depending on the dataset. We additionally
highlight (using a thicker line) categorical features
with consistently high prevalence or which experience
a large change in prevalence across one time point,
and numerical features with high average rank (see
Appendix J for thresholds for each dataset).

For the imaging dataset, where feature importance
is less straightforward, we plot the distribution of
pixel intensities over time, along with proportions of
each of the 14 diagnostic labels.

By highlighting sudden changes in model perfor-
mance and the corresponding time periods in all other
plots, diagnostic plots can help bring attention to
shifts in the distribution of data that coincide with
changing model performance.

4.6. EMDOT Python Package

We release the EMDOT python package3 to help
practitioners move from standard model evaluation to
EMDOT evaluation. See Appendix B for a schematic
of the EMDOT workflow, and see the GitHub repos-
itory for a step-by-step tutorial.

3. https://github.com/acmi-lab/EvaluationOverTime

6



Evaluating Model Performance in Medical Datasets Over Time

Table 2: Test AUROC from all-period training and time-agnostic evaluation.

Model SEER
(Breast)

SEER
(Colon)

SEER
(Lung)

CDC
COVID-19

SWPA
COVID-19

MIMIC-
IV

OPTN
(Liver)

MIMIC-
CXR

LR 0.888 0.863 0.894 0.837 0.928 0.935 0.846 -
GBDT 0.891 0.868 0.894 0.851 0.930 0.931 0.854 -
MLP 0.891 0.869 0.898 0.852 0.928 0.898 0.847 -
DensetNet - - - - - - - 0.860

Figure 3: Average test AUROC of logistic regression vs. time. Each solid line gives the performance of
a model trained up to a simulated deployment time (marked by a dot), evaluated across future
time points. Error bars are ± standard deviation computed over 5 random splits. Red dotted line
gives per-timepoint test performance of a model from all-period training (infeasible in reality, as
it would involve training on data after the simulated deployment date).

5. Results

5.1. All-period Training

In standard time-agnostic evaluation, GBDT and
MLP achieve the highest average test AUROC on
all tabular datasets except MIMIC-IV (Table 2).
Note however that LR often has comparable or only
slightly lower AUROC than the more complex mod-
els. The top 10 coe�cients of each LR with all-period
training are in Appendices C–G, and the per-label
AUROC of MIMIC-CXR is in Appendix Table 11. To
form a baseline for comparison across time, we also
evaluate the all-period models on subsets of the all-
period test data that belong to each year (red dotted
line in Figure 3), but note that this type of training
(on future data) is not feasible in deployment.

5.2. EMDOT Evaluation

Figure 3 plots the AUROC of LR for all tabular
datasets (and DenseNet-121 for MIMIC-CXR) over
time when using the all-historical training regime.
Plots for GBDT and MLP are in Appendix K, along
with plots for AUPRC. We mainly discuss AUROC,
but note that AUPRC observes similar trends as in
AUROC. One di↵erence however is that the baseline
AUPRC performance is given by the label prevalence
(rather than a constant 0.5, as in AUROC), and so
observed trends in label prevalence over time appear
to influence trends in AUPRC (Appendix Figure 44).

For both AUROC and AUPRC, the reported test
performance of a model from standard all-period
training (red dotted line) mostly sits above the per-
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formance of any model that could have realistically
been deployed by that date. Thus, all-period train-
ing tends to provide an over-optimistic estimate of
performance upon deployment.

Across the datasets, a variety of trajectories of
model performance are observed over time. In the
SEER datasets, the AUROC of freshly trained mod-
els increases dramatically near 1988, but several of
these models experience a large drop in AUROC
around 2003 (Figure 3). Additionally, in-period test
AUROCs tend to increase over time. By contrast,
in CDC data, in-sample test AUROCs fluctuate up
and down, and model performance over time varies
more smoothly, appearing to loosely follow the in-
sample performance. Models trained after Decem-
ber 2020 have a slight boost in AUROC, coinciding
with a surge in cases (and hence sample size, Figure
1), however by January 2022 the in-sample AUROC
decreases. In SWPA COVID-19, there is more vari-
ation and uncertainty in AUROC early in the pan-
demic, where sample sizes are small. In December
2020, sample sizes increase, and models seem to be-
come more robust to changes over time. Finally, in
the MIMIC-IV, MIMIC-CXR, and OPTN datasets,
AUROC appears relatively stable across time.

5.3. Training Regime Comparison

As the staleness of training data increases (i.e. as the
test date gets further from the simulated deployment
date), di↵erent training regimes can fare di↵erently
depending on the dataset (Figure 4, left).

In SEER (Breast) and SEER (Lung), sliding win-
dow is initially comparable to all-historical on fresh
(low-staleness) data, but significantly underperforms
both all-historical and all-historical (subsampled)
when data are 8 to 22 years stale. At larger stale-
nesses, all training regimes start to become compa-
rable. In CDC COVID-19, sliding window outper-
forms all-historical regardless of how stale the data
is. By contrast, in SWPA COVID-19, which has the
least amount of data (Table 1), both sliding win-
dow and all-historical (subsampled) underperform
all-historical. In SEER (Colon), performance is rela-
tively stable regardless of training regime. In MIMIC-
IV, OPTN (Liver), and MIMIC-CXR, sliding window
is on average comparable or slightly outperforms all-
historical when staleness is 0, but at nonzero stale-
nesses all-historical outperforms both sliding window
and all-historical subsampled.

Figure 4: AUROC�AUROCLR* all-historical vs. stal-
eness. i.e., AUROC di↵erence relative to
a LR* all-historical baseline across vary-
ing stalenesses of data,5for di↵erent train-
ing regimes (left) and model classes (right).
Error bars are ± std. dev. (*in MIMIC-
CXR, DenseNet-121 is used instead of LR)

5. Note: at the largest stalenesses, there are fewer simulated
deployment dates being averaged over, and they must be
early in the dataset. Here, the sliding window and all-
historical can be expected to perform similarly (especially
when the sliding window is not much larger than or even
matches the history). Since this is an artifact of finite time
ranges, we gray out stalenesses where at least half of the
all-historical data is the first sliding window of data.

8



Evaluating Model Performance in Medical Datasets Over Time

5.4. Model Comparison

In SEER (Breast) and OPTN, GBDT outperforms
both LR and MLP across the entire time range (Fig-
ure 4, right). In SEER (Colon), SEER (Lung), and
CDC COVID-19, both GBDT and MLP initially out-
perform LR when staleness of the training data is
less than 4 years, 4 years, and 7 months, respectively,
however both eventually underperform LR as stale-
ness increases further. While there is an uptick in
GBDT performance on CDC COVID-19 towards 21-
month staleness, we note this data point is derived
from less data than other points on the line because
the data time range is finite. In the SWPA COVID-
19 dataset, LR, MLP, and GBDT appear to perform
comparably over time. In the MIMIC-IV dataset, LR
performed best to begin with and remained the best.

5.5. Detecting Possible Sources of Change

Diagnostic plots for all datasets are in Appendix J.
Here, we discuss SEER (Lung) (Figure 5) in detail
as it has several interesting changes in model perfor-
mance over time. In 1983, as EOD 4 features from the
extent of disease coding schema are introduced (Fig-
ure 5, bottom right), a sudden jump in AUROC oc-
curs (Figure 5, top and middle left). However, mod-
els trained at this time later experience a large AU-
ROC drop (Figure 5, bottom left). By 1988, EOD 4 is
phased out, and EOD 10 features are introduced. This
coincides with another jump in AUROC, sustained
until 2003 when the EOD 10 features are removed. In
this dataset, the all-historical training regime seems
more robust to changes over time, as all-historical
models trained after 1988 avoid the drop that sliding
window models undergo once their window excludes
pre-1988 data (Figure 5, bottom left).

6. Discussion

Reported model performance from standard all-
period training tends to be over-optimistic (Figure
3) as models are evaluated on time points already
seen in their training set (unrealistic in deployment
settings). Thus, AUROCs reported from all-period
training do not capture degradation that would have
occurred in deployment.
Comparing model classes, in all datasets except

MIMIC-IV, GBDT and MLP slightly outperform LR
under standard time-agnostic evaluation (Appendix
Table 2). However, evaluated across time, LR is

Figure 5: SEER (Lung) diagnostic plots. AUROC
vs. time for sliding window (top-left)
and all-historical subsampled (mid-left),
max. drop in AUROC for each simulated
deployment time (low-left), absolute fea-
ture coe�cients for LR models from sliding
window (top-right) and all-historical sub-
sampled (mid-right) and prevalences of im-
portant features over time (low-right).

often comparable and even outperforms more com-
plex models once enough time passes after the simu-
lated deployment date. For example, MLP achieves
the best AUROCs in SEER Breast, Colon, and
Lung in standard time-agnostic evaluation (Table
2). However, in evaluation over time, LR had su-
perior performance once some amount of time (30,
5, 4 years respectively) had passed (Figure 4, right).
In most datasets GBDT appears more robust over
time than MLP, however as the training data be-
comes more stale it tends to become comparable to
LR (in all datasets except OPTN Liver and SEER
Breast, GBDT dipped below the performance of LR
for several stalenesses). Thus, although complex
model classes may appear to outperform simpler lin-
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ear model classes in standard time-agnostic evalu-
ation, one should consider performance over time
when selecting a model class for deployment. As
demonstrated by the di↵erent relative performances
of model classes when evaluated over time versus in a
time-agnostic manner, EMDOT can serve as a helpful
stress-test to combat under-specification.

Regarding training regimes, we find that with in-
creasing stalenesses, all-historical appears more re-
liable than sliding window across all datasets ex-
cept for CDC COVID-19 (Figure 4, left). In SWPA
COVID-19, MIMIC-IV, OPTN (Liver), and MIMIC-
CXR, the benefit of all-historical data likely comes
from the increased sample size, as subsampling all-
historical data to be the same size as the correspond-
ing sliding window resulted in comparable perfor-
mance to sliding window. In the SEER datasets,
the e↵ect of sample size is less pronounced, as sliding
window and subsampled all-historical are frequently
comparable to all-historical. There are certain stal-
enesses for which sliding window underperforms all-
historical, which may be due to the addition and re-
moval of features. If the sliding window model learns
to rely on recently added features which are later
removed, this could result in drops in performance
whereas an all-historical model which had learned to
predict without the presence of such features would
be more robust to such changes. On the other hand,
in CDC COVID-19 (the setting with the most data
and fewest features), subsampled all-historical per-
forms comparably to all-historical, and sliding win-
dow outperforms both across all stalenesses (Figure
4, left). This suggests that the performance of LR
may have been saturated even when a sub-sample of
all-historical data was used, and the benefit of using
more recent data outweighs the larger sample size
a↵orded by all-historical. More broadly, in rapidly
evolving environments with simple models, few fea-
tures, and large quantities of data, the sliding window
training regime could be advantageous.

The SEER datasets had dramatic changes in data
distribution in both 1988 and 2003, when impor-
tant features were added and/or removed (Figure 5).
One possible reason for the robustness of all-historical
models in this dataset is that after 2003, when fea-
tures like EOD 10 were removed, the model could still
rely on features that were introduced prior to the use
of EOD 10 in 1988. More broadly, we hypothesize
that if a model was trained on a mixture of distribu-
tions that occurred throughout the past, it may be

better equipped to handle shifts to settings similar to
those distributions in the future.

While the SEER datasets and COVID-19 datasets
displayed several changes in model performance over
time, the OPTN and MIMIC datasets had relatively
stable behavior. One possible reason for this is that
the outcomes or diseases of interest were relatively
stable in nature, we did not observe any substantial
changes in the distribution of data. Another is that
in the MIMIC datasets, a three-year range was given
for each sample rather than a specific date. This
uncertainty around the date, along with the limited
number of date ranges, could result in a smoothing
e↵ect on the resulting estimates of performance.

In conclusion, EMDOT not only yields insights into
the suitability of di↵erent model classes or training
regimes for deployment, but also helps one detect
distribution shifts that occurred in the past. Under-
standing such shifts may help practitioners be pre-
pared for shifts of a similar nature in the future. Al-
though the EMDOT framework does require addi-
tional computational time than the standard time-
agnostic evaluation setup, we argue that the insights
that could be gained from this procedure are worth-
while, especially before deployment in high-stakes
settings.

Limitations and Future Work One possible
reservation that users might have about using EM-
DOT is that it could involve training up to T times as
many models as would normally be required (where
T is number of timepoints). To help alleviate this
concern, in future work we plan to implement paral-
lelization in EMDOT. For noisier estimates of model
performance in less time, one could also subsample
the dataset. Another interesting extension is explor-
ing performance over time in other data modalities
(e.g. time series, natural language, etc.). Depending
on the complexity of models used in these modalities,
this may require additional computational resources.
More broadly, we hope that others may also build
upon EMDOT to shine new light on how models and
methodologies fare when evaluated with an eye to-
wards deployment.
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