Model Evaluation in Medical Datasets Over Time
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ML models deployed in health systems
face data drawn from
continually evolving environments.

But, researchers proposing such models
typically evaluate them in a
time-agnostic manner.
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e [rain up to each "simulated deployment date”
& evaluate on all future timepoints

e Training regimes: sliding window, all-historical
e Model classes: LR, GBDT, MLP

Dataset

Outcome

Datasets: SEER, CDC, SWPA, OPTN, MIMIC-IV

Time Range (unit)

SEER (Breast)| 5Y Surv. 1975 — 2013 (year) 462,023 | 378,758
SEER (Colon) | 5Y Surv. 1975 — 2013 (year) 254 112 | 135,065
SEER (Lung) | 5Y Surv. 1975 — 2013 (year) 457,695 | 49,997
CDC COVID Mort. | Mar'20 — May '22 (month) | 941,140 | 190,786
SWPA COVID | 90D Mort. | Mar '20 — Feb '22 (month) | 35,293 | 1,516
MIMIC-IV  [In-ICU Mort.| 2009 — 2020 (year) 53,050 | 3,334
OPTN (Liver) | 180D Mort. 2005 — 2017 (year) 143,709 | 4,635

Time-agnostic Evaluation
(Standard) Reported AUROC

Model SEER (Colon) CDC SWPA
LR 0.867 0.837 | 0.914
GBDT 0.871 0.850 | 0.926
MLP 0.873 0.844 | 0.918
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> |[n standard eval., GBDT & MLP do best.
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> SEER (Colon): jumps in 1983 and 2003.

> CDC: relatively smooth, boost in Dec 2021.
> SWPA: more variation & uncertainty at first.
> Red line shows over-optimistic standard eval.
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> SEER (Colon): all comparable
> CDC: sliding window best
> SWPA: all-historical best

Model classes:
> SEER (Colon): LR better at large staleness

> CDC: LR better at large staleness

> SWPA: all comparable
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> 1983: EOD4 introduced, jump in performance
> 1988: EOD4 removed, EOD10 introduced

> 2003: EOD10 removed

> All-historical avoids the large maximum AUROC

drop that sliding window experiences

Discussion & Future Work

e Larger datasets in rapidly evolving environments may benefit from sliding window training

e Smaller datasets may benefit from all-historical training

e Introduction and removal of features can result in dramatic changes in performance over time

e |f a model were trained on a mixture of distributions that occurred throughout the past, it may be
better equipped to handle shifts to related settings in the future

Up next:
e Parallelization of EMDOT

e Extensions to other modalities

e Benchmarking domain
adaptation techniques
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