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Abstract
We qualitatively and quantitatively compare
saliency maps generated from state-of-the-art
deep learning chest X-ray classification models
to radiologist eye gaze data. We find that across
several saliency methods, correct predictions have
saliency maps more similar to the corresponding
eye gaze data than the same for incorrect predic-
tions. To incorporate eye gaze into the model
training process, we create DenseNet-Aug, a sim-
ple augmentation of DenseNet which performs
comparably to the state-of-the-art. Finally, we ex-
tract salient annotated regions for each label class,
thereby characterizing model attribution at the
dataset level. While sample-level saliency maps
visibly vary, these dataset-level regional compar-
isons indicate that across most class labels, radi-
ologist eye gaze, DenseNet, and DenseNet-Aug
often identify similar salient regions.

1. Introduction
Deep learning for automated diagnosis has shown promise
in several medical domains including radiology, opthamol-
ogy, dermatology, and pathology (Pasa et al., 2019; Esteva
et al., 2017; Ting et al., 2019; Campanella et al., 2019).
Machine learning models can provide relatively cheap and
timely predictions of the diagnosis, and, as assessed on i.i.d.
holdout sets, have reached performance comparable to clini-
cians on several tasks of interest (Rajpurkar et al., 2018; Liu
et al., 2019; Majkowska et al., 2020). Despite its significant
potential benefits, this technology’s adoption has met with
hesitancy, especially in high-stakes settings. This reticence
largely stems from concerns about limited demonstrations of
external validity, a well-documented brittleness of models in
more realistic non-i.i.d. deployment settings, and potential
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biases across different demographic groups. These concerns
are compounded by a feeling among practitioners and stake-
holders that they lack transparency into how the “black-box”
model arrives at its prediction.

Without interpretability mechanisms built-in to these “black-
boxes,” post-hoc explanation methods such as saliency maps
have commonly been used to characterize these models
beyond their final performance metrics. While saliency
maps are an active area of research and many have been
shown to fail sanity checks (Adebayo et al., 2018), these
methods are hoped to provide insights into (i) how the model
reaches its predictions; (ii) potential reliance of models on
artifacts arising from dataset creation procedures; and (iii)
identifying inputs or regions of potential clinical interest.

In this work, we systematically compare saliency maps to
radiologist eye gaze data, and extend a state-of-the-art chest
X-ray classification model by incorporating eye gaze data
into model training. In addition to saliency maps generated
per sample, we identify annotated regions of interest that are
salient in predictions for each label class across the entire
dataset. Finally, we quantify the similarity between saliency
maps and eye gaze data using a structural similarity score,
finding that saliency maps for correct predictions tend to be
closer to radiologist eye gaze than incorrect predictions.

1.1. Related Work

The recent releases of large public chest X-ray datasets such
as MIMIC-CXR (Johnson et al., 2019a), CheXpert (Irvin
et al., 2019), ChestX-ray14 (Wang et al., 2017) and Padchest
(Bustos et al., 2020) have catalyzed the use of deep learning
for chest X-ray classification (Rajpurkar et al., 2017; 2018;
Baltruschat et al., 2019; Majkowska et al., 2020; Qin et al.,
2019; Seyyed-Kalantari et al., 2020). In some cases, neural
networks have been reported to attain performance on par
with radiologists (Rajpurkar et al., 2018; Majkowska et al.,
2020). To interpret these models, studies have often turned
to saliency maps (Wang et al., 2017; Rajpurkar et al., 2017;
Baltruschat et al., 2019). To our knowledge, however, there
have been no studies systematically comparing radiologist
eye gaze data to saliency maps produced from deep learn-
ing models for chest X-ray classification. As far as we are
aware, the most similar to our work is a contemporaneous
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study which examines the similarity of saliency maps to seg-
mentations provided by radiologists (Saporta et al., 2021),
however this work focuses on a single saliency method, per-
forms its evaluation using different metrics, and does not
incorporate radiologist eye gaze data.

2. Methods
2.1. Data and Pre-processing

Our study uses two datasets based on the MIMIC-CXR
Database v2.0.0 (Johnson et al., 2019a)(Goldberger et al.,
2000): (1) MIMIC-CXR-JPG (Johnson et al., 2019b), which
compresses images into JPG format and extracts labels from
the free-text reports, and (2) Eye Gaze Data for Chest X-rays
(Eye-Gaze-CXR) (Karargyris et al., 2021), which contains
radiologist eye tracking data for 1,083 frontal chest X-rays
from MIMIC-CXR. Compared to MIMIC-CXR, Eye-Gaze-
CXR contains a greater proportion of the Lung Opacity, No
Finding, and Pneumonia labels, and has much lower support
(0-2 examples) for 6 out of the 14 labels in MIMIC-CXR
(Table 1). Additionally, Eye-Gaze-CXR includes annota-
tions for four different regions of interest: the aortic knob,
right lung, left lung, and mediastanum (Figure 2).

We use the same pre-processing steps as Seyyed-Kalantari
et al. (2020), to resize, normalize, and augment the data.
Ground-truth radiologist eye gaze heat maps are generated
using the same pre-processing as Karargyris et al. (2021),
which applies Gaussian smoothing to gaze points and in-
creases the intensity depending on time spent on each point.
Figure 1 contains examples of images after pre-processing.

2.2. Saliency Map Methods

We explore six saliency map generation techniques: a sim-
ple saliency method which returns the gradient of the output
respect the input (SL) (Simonyan et al., 2013), GradCAM
(GC) (Selvaraju et al., 2017), DeepLift (DL) (Shrikumar
et al., 2017), Layer Conductance (LC) (Dhamdhere et al.,
2018), Gradient SHAP (GS) (Lundberg & Lee, 2017), and
SmoothGrad (NT) (Smilkov et al., 2017). These methods
were chosen for their prominence, usage in prior medical
machine learning works, and variety in explanation mecha-
nism (see supplemental material).

2.3. Models: DenseNet and DenseNet-Aug

First, we reproduce state-of-the-art chest X-ray classifica-
tion on MIMIC-CXR by replicating the DenseNet results
from Seyyed-Kalantari et al. (2020)1 (Figure 1, highlighted

1This work reported results on MIMIC-CXR v1.0.0 which
did not have a pre-specified test set. Since then, v2.0.0 has been
released including a new pre-specified test set. Thus, after re-
producing results on v1.0.0, we ultimately report results on the
standardized v2.0.0 test set for reproducibility. Note that the v2.0.0

in blue). After reproducing the state-of-the-art DenseNet
model, we incorporate eye gaze data into the training pro-
cess by augmenting the architecture with an arm for predict-
ing the radiologist eye gaze heatmaps.2

Table 1. Support for each label in MIMIC-CXR-JPG and Eye-
Gaze-CXR, given as number of samples (proportion of dataset).
Excludes samples with more than one label. CM = Cardiomedi-
astinum, Eff. = Effusion, Dev. = Devices.

Label MIMIC-CXR-JPG Eye-Gaze-CXR
(n = 377,110) (n = 692)

Atelectasis 65,047 (0.103) 13 (0.019)
Cardiomegaly 64,346 (0.102) 53 (0.077)
Consolidation 14,675 (0.023) 9 (0.013)
Edema 36,564 (0.058) 33 (0.048)
Enlarged CM 10,042 (0.016) 0 (0.0)
Fracture 7,605 (0.012) 1 (0.001)
Lung Lesion 10,801 (0.017) 2 (0.003)
Lung Opacity 76,423 (0.121) 98 (0.142)
No Finding 143,352 (0.226) 379 (0.548)
Pleural Eff. 76,957 (0.121) 23 (0.033)
Pleural Other 3,460 (0.005) 1 (0.001)
Pneumonia 26,222 (0.041) 80 (0.116)
Pneumothorax 14,257 (0.022) 0 (0.0)
Support Dev. 84,073 (0.133) 0 (0.0)

The loss functions L for the DenseNet (DN) model and
our augmented model (DenseNet-Aug, DN-Aug) are given
below:

LDN = BCE(y, ŷ)

LDN-Aug =

{
BCE(y, ŷ) + λ ·MSE(Ê, E), if E exists
BCE(y, ŷ), otherwise

Where E and Ê are the true and predicted 2D eye gaze
images, y and ŷ are the true and predicted 14-label proba-
bility vectors, BCE is binary cross entropy, λ = 1000, and
MSE is mean squared error. The model pipeline for both the
original DenseNet model and Densenet-Aug are illustrated
in Figure 1. See the Supplement for model training details.

2.4. Comparing Model Saliency Maps to Radiologist
Eye Gaze Ground Truth

For simplicity of interpretation, we filter out samples with
more than one classification. For each class label l (e.g.

test set label distribution is different from that of training (e.g. “No
Finding” in 22.8% of train vs. 9.4% of test).

2Note that the MIMIC-CXR v2.0.0 training set includes sam-
ples from Eye-Gaze-CXR. While DenseNet does not train on the
eye gaze data, DenseNet-Aug does. This is a limitation since we
analyze saliency maps from all samples in Eye-Gaze-CXR due to
limited eye gaze data. While we do not explicitly enforce that the
saliency maps be similar to eye gaze data, we do provide informa-
tion about eye gaze to the DenseNet-Aug model in training.
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Label 
Predictions

[1, 0, 0, …, 1]
Pre-processed 

Chest X-ray 
Image

DenseNet-121

Eye Gaze 
Prediction

linear layer 
+ sigmoid

linear layer 
+ ReLU 
+ linear layer

Figure 1. Model architectures for DenseNet (blue components only), and DenseNet-Aug (red component added in) which augments the
DenseNet model using limited radiologist eye gaze supervision.

aortic knob
right lung
left lung
mediastanum

Figure 2. Annotated regions in Eye-Gaze-CXR data. Aortic knob
(orange), right lung (green), left lung (blue), medistanum (purple).

pneumonia), we are interested in confident “correct” pre-
dictions, defined as samples with true label l and predicted
probability among the top k predicted probabilities for l,
where k is half of the training label frequency.

Table 2. AUROC on MIMIC-CXR v2.0.0 test set, with 95% confi-
dence intervals derived from bootstrapping with 1,000 replicates.
DenseNet refers to the state-of-the-art model described by Seyyed-
Kalantari et al. (2020), and DenseNet-Aug refers to our augmented
model with eye gaze supervision. CM = Cardiomediastinum, Eff.
= Effusion, Dev. = Devices.

Label DenseNet DenseNet-Aug

Atelectasis 0.759 (0.742 – 0.773) 0.751 (0.735 – 0.765)
Cardiomegaly 0.788 (0.774 – 0.801) 0.778 (0.766 – 0.792)
Consolidation 0.745 (0.719 – 0.770) 0.749 (0.722 – 0.776)
Edema 0.835 (0.821 – 0.848) 0.833 (0.821 – 0.846)
Enlarged CM 0.719 (0.682 – 0.753) 0.722 (0.685 – 0.758)
Fracture 0.676 (0.633 – 0.717) 0.680 (0.637 – 0.724)
Lung Lesion 0.737 (0.702 – 0.768) 0.727 (0.692 – 0.764)
Lung Opacity 0.694 (0.678 – 0.709) 0.697 (0.681 – 0.712)
No Finding 0.793 (0.776 – 0.808) 0.803 (0.788 – 0.817)
Pleural Eff. 0.888 (0.879 – 0.898) 0.884 (0.874 – 0.893)
Pleural Other 0.843 (0.81 – 0.874) 0.851 (0.824 – 0.877)
Pneumonia 0.711 (0.687 – 0.734) 0.713 (0.689 – 0.735)
Pneumothorax 0.832 (0.798 – 0.865) 0.816 (0.781 – 0.850)
Support Dev. 0.885 (0.875 – 0.895) 0.885 (0.875 – 0.894)

Qualitative Comparison Across six saliency methods
and the three label classes with highest support in Eye-
Gaze-CXR, we extract the saliency maps and corresponding

ground truth for the top 1 most confident “correct” predic-
tions as well as the most confident incorrect predictions.

Quantitative Region-level Comparison To identify the
most salient regions (Figure 2) according to radiologist eye
gaze and our models, for each sample we compute a z-score
for the proportion of total saliency within each region. The
region with the highest z-score relative to other images is
considered the most salient area “predicted” by the model.
Grouping samples by their class label, we can then plot
distributions over most salient regions in each class.

Quantitative Image-level Comparison Across all class
labels with support ≥ 10 samples and six saliency methods,
we compute the average structural similarity index measure
(SSIM) score between saliency maps and radiologist eye
gaze data among correct and incorrect predictions. The
SSIM score (see Supplement for full description) is used
as the primary metric to quantitatively compare radiologist
eye gaze maps to model saliency maps. In contrast to the
mean squared error (MSE) metric, the SSIM score, which
is computed by aggregating over sliding windows, is more
robust to small geometrical changes, and takes luminance,
contrast, and structures into account (Wang & Bovik, 2009).

3. Results
Overall, DenseNet and DenseNet-Aug achieve comparable
test AUROCs (Table 2). Figure 3 displays model saliency
maps with radiologist eye gaze heatmaps for the three dis-
eases with the most support in Eye-Gaze-CXR. For pneu-
monia and lung opacity (which have highest support), the
most salient points seem surprisingly consistent with radi-
ologist eye gaze for all tested saliency methods except NT.
In terms of annotated regions of interest, the most salient
regions in each label class seem fairly consistent across ra-
diologist eye gaze, DenseNet, and DenseNet-Aug (Figure
4). On average, the SSIM scores for radiologist eye gaze
compared to saliency maps are higher for correct predictions
than incorrect predictions (Tables 3 and 4).
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Figure 3. Saliency maps of the most confident predictions per the three classes (excluding No Finding) with highest support (Pneumonia,
Lung Opacity, and Cardiomegaly), compared to ground truth eye gaze data. Top: Densenet; Bottom: Densenet-Aug; Left: correct
predictions, with true class on the y-axis; Right: incorrect predictions, with the (incorrect) predicted label on the y-axis.

Table 3. Average SSIM scores comparing DenseNet saliency maps from “correct” samples (3, high predicted probability for true label) to
radiologist eye gaze, and saliency maps from incorrect samples (7, high probability for a class different from the true label) to radiologist
eye gaze. True labels are across the top, and saliency methods are in the first column.

Atelectasis Cardiomegaly Edema Lung Opacity No Finding Pleural Effusion Pneumonia
3 7 3 7 3 7 3 7 3 7 3 7 3 7

SL 0.427 0.386 0.398 0.373 0.467 0.490 0.450 0.442 0.387 0.388 0.378 0.359 0.465 0.435
GC 0.363 0.285 0.351 0.353 0.383 0.397 0.362 0.332 0.314 0.317 0.417 0.394 0.402 0.381
DL 0.388 0.370 0.407 0.401 0.417 0.457 0.402 0.396 0.362 0.361 0.372 0.373 0.399 0.403
LC 0.363 0.285 0.351 0.353 0.383 0.397 0.362 0.332 0.314 0.317 0.417 0.394 0.402 0.381
GS 0.391 0.410 0.441 0.420 0.458 0.486 0.450 0.451 0.407 0.406 0.413 0.436 0.423 0.419
NT 0.397 0.435 0.443 0.428 0.433 0.459 0.406 0.406 0.399 0.398 0.456 0.464 0.358 0.371

Table 4. Average SSIM scores comparing DenseNet-Aug saliency maps from “correct” samples (3, high predicted probability for true
label) to radiologist eye gaze, and saliency maps from incorrect samples (7, high probability for a class different from the true label) to
radiologist eye gaze. True labels are across the top, and saliency methods are in the first column.

Atelectasis Cardiomegaly Edema Lung Opacity No Finding Pleural Effusion Pneumonia
3 7 3 7 3 7 3 7 3 7 3 7 3 7

SL 0.489 0.361 0.373 0.341 0.423 0.462 0.465 0.422 0.370 0.371 0.395 0.361 0.485 0.415
GC 0.352 0.322 0.281 0.266 0.362 0.381 0.366 0.336 0.319 0.320 0.341 0.348 0.428 0.381
DL 0.433 0.372 0.400 0.375 0.417 0.439 0.415 0.419 0.356 0.355 0.420 0.401 0.421 0.412
LC 0.352 0.322 0.281 0.266 0.362 0.381 0.366 0.336 0.319 0.320 0.341 0.348 0.428 0.381
GS 0.427 0.372 0.441 0.414 0.423 0.450 0.432 0.443 0.404 0.405 0.446 0.410 0.434 0.432
NT 0.406 0.441 0.453 0.450 0.421 0.435 0.391 0.412 0.388 0.389 0.435 0.447 0.335 0.383
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Figure 4. For each class, the proportion of samples with high attribution to each annotated region (A = aortic knob, R = right lung, L = left
lung, M = mediastanum), according to the ground truth radiologist eye gaze, Densenet, and DenseNet-Aug. Proportions for Densenet and
DenseNet-Aug are computed among “correct” predictions for each class. Annotated regions are shown in Figure 2.

4. Discussion
Due to the limited size of Eye-Gaze-CXR, it was unsurpris-
ing that that DenseNet and DenseNet-Aug had similar test
AUROCs. To better understand the potential benefits of eye
gaze data for improving predictions, future work includes
collecting more eye gaze data as well as developing models
which enforce a stronger prior on examples without eye
gaze data, perhaps utilizing attention mechanisms to do so.

For both DenseNet and DenseNet-Aug, variation between
saliency maps generated by different methods is visibly
present, but most saliency maps for correct predictions tend
to focus on the same areas as the ground truth radiologist
eye gaze (Figure 3). GC and LC appear similar, as they are
(last) layer attribution methods which require upsampling
to produce coarser saliency maps. NT tends to have more
spread out saliency maps, likely due to its generative pro-
cess which includes adding sampled Gaussian noise to the
input image and averaging across samplings. Interestingly,
as shown in Figure 3, when DenseNet and DenseNet-Aug
are confidently incorrect, some of their saliency maps bear
a resemblance to the ground truth eye gaze data (especially
DenseNet-Aug, possibly due to the auxiliary eye gaze data
used to supervise DenseNet-Aug). One potential reason for
this similarity could be that certain regions are distinctive
and important for several possible labels. Another reason
might be that the saliency method is invariant to how the
model makes its predictions (Adebayo et al., 2018), a trou-
bling property which could be sanity-checked for.

In the interpretation in terms of annotated regions (Figure 4),
each sample is only counted towards its most salient region
rather than taking into account the distribution over regions.
While this is done for ease of interpretation, it could skew
the resulting counts towards a mode and not adequately
represent e.g. the second most salient region. Nevertheless,
regions of highest saliency tended to be consistent with
radiologist eye gaze data except for lung opacity, lung lesion,

and pleural effusion. The utilization of annotated regions
reduced the reliance on sample-level explanations, allowing
us to characterize the nature of the model across samples.

In Tables 3 and 4, excluding Edema, NT, and No Finding
(where scores are similar), both DenseNet and DenseNet-
Aug’s correctly predicted samples have saliency maps with
higher similarity to eye gaze data than incorrectly predicted
samples. This suggests potential spatial attribution informa-
tion shared between saliency maps and radiologist eye gaze
data, and serves as motivation for future work incorporating
eye gaze data to improve predictions.

Overall, while it is inconclusive from our preliminary exper-
iments on DenseNet and DenseNet-Aug whether incorpo-
ration of radiologist eye gaze data can improve predictive
performance, we quantitatively and qualitatively compare
several model saliency maps to human eye gaze data. We
find that despite significant variation between the maps gen-
erated by different saliency methods, the most salient re-
gions according to these saliency methods are often the
same as those most salient in radiologist eye gaze data. Ad-
ditionally, the saliency maps of correctly predicted samples
tend to have higher structural similarity to radiologist eye
gaze those of incorrectly predicted samples.

More broadly, however, there are several considerations for
whether it is desirable for saliency maps to mimic human
gaze. While human gaze can reflect key information for
decision-making, eye gaze data can suffer from a central bias
(Le Meur & Baccino, 2013). Furthermore, saliency maps
themselves might not fully reflect “concepts” important
to the model’s prediction. It also is possible that models
may pick up on non-intuitive characteristics that are indeed
helpful for prediction. At the same time, humans might be
pre-disposed to pay attention to causal features and concepts,
which could be more robust to distribution shift. Ultimately,
our work highlights similarity to human gaze as another lens
through which models can be viewed.
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