

MOTIVATION

Deep learning for automated diagnosis has shown promise in several medical domains.

Large public **chest X-ray datasets** have catalyzed the use of deep learning for chest X-ray classification.

To interpret these models, studies often turn to **saliency maps**.

However, (to our knowledge) no studies have systematically compared radiologist eye gaze to saliency maps produced from deep learning models for chest X-ray classification.

METHODS

Datasets:

(1) **MIMIC-CXR** Database v2.0.0^[1,2] (2) Eye Gaze Data for Chest X-Rays (**Eye-Gaze-CXR**)^[3]

Models: **DenseNet**^[4] and **DenseNet-Aug**

 $BCE(y, \hat{y}) + \lambda \cdot MSE(\hat{E}, E)$, if E exists $L_{\rm DN-Aug} =$ $BCE(y, \hat{y})$ otherwise

Saliency Methods: gradient wrt input (SL), GradCAM (GC), DeepLift (DL), Layer Conductance (LC), Gradient SHAP (GS), SmoothGrad (NT)

Qualitative comparison of all six saliency methods vs. ground truth

Quantitative region-level comparison:

- determine a "most salient region" for each sample: take highest z-score (relative to other images) for the proportion of total saliency within each region
- Plot each class's distribution over "most salient regions."

Quantitative image-level comparison:

compute avg. structural similarity index (SSIM) score between model saliency maps & radiologist eye gaze among correct & incorrect preds.

[1] Johnson, A. E., Pollard, T. J., Berkowitz, S. J., Greenbaum, N. R., Lungren, M. P., Deng, C.-y., Mark, R. G., and Horng, S. Mimic-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Scientific Data, 6(1):1–8, 2019a. [2] Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P., Mark, R., and Stanley, H. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. pp. e215–e220, 2000. Circulation [Online] 101 (23). [3] Karargyris, A., Kashyap, S., Lourentzou, I., Wu, J. T., Sharma, A., Tong, M., Abedin, S., Beymer, D., Mukherjee, V., Krupinski, E. A., et al. Creation and validation of a chest x-ray dataset with eye-tracking and report dictation for Al development. Scientific Data, 8(1): 1–18, 2021. [4] Seyyed-Kalantari, L., Liu, G., McDermott, M., Chen, I. Y., and Ghassemi, M. Chexclusion: Fairness gaps in deep chest x-ray classifiers. In BIOCOMPUTING 2021: Proceedings of the Pacific Symposium, pp. 232–243. World Scientific, 2020 [5] Le Meur, O. and Baccino, T. Methods for comparing scan-paths and saliency maps: strengths and weaknesses. Behavior Research Methods, 45(1):251–266, 2013.

Do You See What I See? A Comparison of Radiologist Eye Gaze to Computer Vision Saliency Maps for Chest X-ray Classification

Jesse Kim^{*}, Helen Zhou^{*}, Zachary Lipton

AUROCs

Label	DenseNet ^[4]	DenseNet-Aug			
Atelectasis	0.759 (0.742 – 0.773)	0.751 (0.735 – 0.765)			
Cardiomegaly	0.788 (0.774 – 0.801)	0.778 (0.766 – 0.792)			
Consolidation	0.745 (0.719 – 0.770)	0.749 (0.722 – 0.776)			
Edema	0.835 (0.821 – 0.848)	0.833 (0.821 – 0.846)			
Enlarged CM	0.719 (0.682 – 0.753)	0.722 (0.685 – 0.758)			
Fracture	0.676 (0.633 – 0.717)	0.680 (0.637 – 0.724)			
Lung Lesion	0.737 (0.702 – 0.768)	0.727 (0.692 – 0.764)			
Lung Opacity	0.694 (0.678 – 0.709)	0.697 (0.681 – 0.712)			
No Finding	0.793 (0.776 – 0.808)	0.803 (0.788 – 0.817)			
Pleural Eff.	0.888 (0.879 – 0.898)	0.884 (0.874 – 0.893)			
Pleural Other	0.843 (0.810 – 0.874)	0.851 (0.824 – 0.877)			
Pneumonia	0.711 (0.687 – 0.734)	0.713 (0.689 – 0.735)			
Pneumothorax	0.832 (0.798 – 0.865)	0.816 (0.781 – 0.850)			
Support Dev.	0.885 (0.875 – 0.895)	0.885 (0.875 – 0.894)			

Distribution over "most salient regions" for each class:

Average similarity (SSIM scores) of **DenseNet** and **DenseNet-Aug** saliency maps vs. radiologist eye gaze data, among "correct" (\mathbf{V}) and "incorrect" (\mathbf{X}) predictions:

Saliency method	Lung Opacity (n=98)		Pneumonia (n=80)		Cardiomegaly (n=53)		Edema (n=33)		Pleural Effusion (n=23)		Atelectasis (n=13)	
	\checkmark	X	\checkmark	X	\checkmark	X	\checkmark	X	\checkmark	X	\checkmark	X
SL	0.450	0.442	0.465	0.435	0.398	0.373	0.467	0.490	0.378	0.359	0.427	0.386
GC	0.362	0.332	0.402	0.381	0.351	0.353	0.383	0.397	0.417	0.394	0.363	0.285
DL	0.402	0.396	0.399	0.403	0.407	0.401	0.417	0.457	0.372	0.373	0.388	0.370
LC	0.362	0.332	0.402	0.381	0.351	0.353	0.383	0.397	0.417	0.394	0.363	0.285
GS	0.450	0.451	0.423	0.419	0.441	0.420	0.458	0.486	0.413	0.436	0.391	0.410
NT	0.406	0.406	0.358	0.371	0.443	0.428	0.433	0.459	0.456	0.464	0.397	0.435
SL	0.465	0.422	0.485	0.415	0.373	0.341	0.423	0.462	0.395	0.361	0.489	0.361
GC	0.366	0.336	0.428	0.381	0.281	0.266	0.362	0.381	0.341	0.348	0.352	0.322
DL	0.415	0.419	0.421	0.412	0.400	0.375	0.417	0.439	0.420	0.401	0.433	0.372
LC	0.366	0.336	0.428	0.381	0.281	0.266	0.362	0.381	0.341	0.348	0.352	0.322
GS	0.432	0.443	0.434	0.432	0.441	0.414	0.423	0.450	0.446	0.410	0.427	0.372
NT	0.391	0.412	0.335	0.383	0.453	0.450	0.421	0.435	0.435	0.447	0.406	0.441

Regions: aortic knob (A), right lung (R), left lung (L),

RESULTS

Saliency maps for **DenseNet** and **DenseNet-Aug** SL GC DL LC GS NT Ground Truth Input SL GC DL LC GS NT Ground Truth Input SL GC DL LC GS NT Ground Truth Input SL GC DL LC GS NT Ground Truth Input
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0</t SL GC DL LC GS NT Ground Truth Input SL GC DL LC GS NT Ground Truth Input NT Ground Truth Input Consolidation Fracture Ground Truth DenseNet DenseNet-Aug Pleural Other Pleural Effusion No Finding Pneumonia

DISCUSSION

Qualitative Saliency Map Analysis:

- Saliency methods can produce significantly different maps • NT is the most spread out. GC and LC are similar,
 - possibly due to upsampling the last layer.
- Saliency maps for correct predictions focus on similar areas as ground truth
- Confidently incorrect saliency maps still bear some resemblance to ground truth eye gaze data (especially DenseNet-Aug). Two current hypotheses:
- Certain regions are important for multiple labels
- Model invariance (saliency sanity checks required)

Quantitative Saliency Region Level Analysis:

- General agreement between ground truth and model attribution distributions.
- Region based attribution may lessen reliance on pixel-based explanations

Quantitative Saliency Map Analysis:

- SSIM score higher for DenseNet & DenseNet-Aug when prediction is correct (excluding No Finding, NT, & Edema)
 - Suggests shared spatial attribution information between saliency maps and eye gaze data.

Overall Model Performance:

- DenseNet & DenseNet-Aug have similar test set AUCs.
- Inconclusive if incorporating radiologist eye gaze data will improve predictive performance.

FUTURE WORK

Next Steps:

- Collect more eye gaze data
- Use attention mechanisms to improve DenseNet-Aug performance

Considerations:

- Is it desirable for saliency maps to mimic human gaze?
 - Eye gaze can locate important, robust features, but also suffers from central bias^[5]
 - Models may pick up on important characteristics unintuitive to the human eye.
- Our work is purely comparative and does not necessarily promote saliency maps for interpretive purposes.