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Abstract. Respiratory complications due to coronavirus have claimed
hundreds of thousands of lives in 2020. Extracorporeal membrane oxy-
genation (ECMO) is a life-sustaining oxygenation and ventilation ther-
apy that may be used when mechanical ventilation is insufficient. While
early planning and surgical cannulation for ECMO can increase survival,
clinicians report the lack of a risk score hinders these efforts. We de-
velop the PEER score to highlight critically ill patients with viral or
unspecified pneumonia at high risk of mortality in a subpopulation eli-
gible for ECMO. The score is validated across two critical care datasets,
and predicts mortality at least as well as other existing risk scores.
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1 Introduction

Coronavirus disease COVID-19 has infected millions globally. Many cases progress
from Severe Acute Respiratory Syndrome (SARS-CoV-2) with viral pneumonia
to acute respiratory distress syndrome (ARDS) to death. ECMO can temporarily
sustain patients with severe ARDS when mechanical ventilation fails to facilitate
with oxygenation via lungs. However, ECMO is costly and applicable only for
patients healthy enough to recover and return to a high functional status.

While ECMO is more effective when planned in advance [7], applicable risk
scores remain unavailable [2, 17]. This paper introduces the Viral or Unspecified
Pneumonia ECMO-Eligible Risk (PEER) Score, using measurements from the
time of would-be planning—early in the critical care stay. In contrast to existing
pneumonia risk scores [6, 8, 18, 19], the PEER score targets those with viral or
unspecified pneumonia in the critical care setting, for a cohort potentially eligible
for ECMO. Unspecified pneumonia is included since the infectious etiology of
pneumonia often cannot be determined, and it broadens the study population.

Though limited by geographic availability, ECMO usage has increased 4-fold
in the last decade [22]. COVID-19 guidelines suggest ECMO as a late option in
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escalation of care for severe ARDS secondary to SARS-CoV-2 infection [1, 17].
However, early epidemiological studies of coronavirus [27, 30, 31] have yet to
establish ECMO’s utility. A pooled analysis of four studies [13] showed mortality
rates of 95% with ECMO vs. 70% without, but the number of ECMO recipients
was small, and no studies described a protocol specifying indications for ECMO.

To better understand the role of ECMO as a rescue for ventilation non-
responsive, SARS-CoV-2 ARDS, we study its broader use in ARDS. Treatment
guidelines suggest ECMO use in severe ARDS alongside other advanced ventila-
tion strategies [20, 28], with the World Health Organization citing effectiveness
for ARDS and reducing mortality of the Middle East Respiratory Syndrome
(MERS). Despite these recommendations and allocated ECMO resources [22],
risk scores tailored to ECMO consideration are lacking. Our study addresses this
by drawing from viral and source unidentified cases of pneumonia that escalate
to critical care admissions, guided by the intuition that ARDS from these pneu-
monia are expected to better resemble COVID-19 ARDS than all-comer ARDS.

Related Work There are a number of pneumonia [6, 8, 11, 18, 26], COVID-
19 [9, 10, 15], hospitalization mortality [32], and ECMO risk scores [23], but
none center on the time of risk evaluation for ECMO candidacy. The pneumonia
and COVID-19 risk scores are assessed on populations with lower acuity, while
APACHE is not focused on respiratory illness. Our risk score is meant for use in
ECMO planning rather than predicting outcomes among patients already receiv-
ing ECMO. Registry-based studies have also compared SARS-CoV-2 outcomes
to that of other viral infections, including MERS, H1N1 flu, and seasonal flu. One
MERS-related ARDS study of critically ill patients demonstrated higher mor-
tality than those in studies on COVID-related ARDS, but may be attributed to
sicker patients at enrollment [4]. A similar H1N1 study reported lower mortality
(12-17%), albeit considering a younger population (average age 40) [3].

Physiologic concerns have also been raised about the use of ECMO for SARS-
CoV-2. One argues that while ECMO is primarily beneficial for respiratory re-
covery, a spike in all-cause death but not ARDS-related death could indicate a
limited role of ECMO[14]. Others point out that COVID-associated lymphopenia
might be exacerbated by ECMO-induced lymphopenia which could mechanisti-
cally affect a healthy immune response to infection. Inflammatory cytokines and
specifically interleukin 6 elevation is associated with COVID-19 mortality and
rises with the use of ECMO [5, 13]. These expert voices do not argue for the
avoidance of ECMO, but rather call for additional study.

2 Data

The eICU Collaborative Research Database [21] contains 200,859 admissions to
intensive care units (ICU) across multiple centers in the United States between
2014 and 2015. The MIMIC-III clinical database [16] consists of data from 46,476
patients who stayed in critical care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012. Model development and in-domain validation
primarily use data from eICU, and out-of-domain validation uses MIMIC-III.
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Cohort Selection Inclusion criteria for the study cohort are delineated in
Figure 1. The population of interest is among patients with viral or otherwise
unspecified non-bacterial, non-fungal, non-parasitic, and non-genetic pneumonia.
While there are no absolute contraindications of ECMO, the therapy is reserved
for patients likely to have functional recovery. Patients over 70 years old would
not be good candidates for ECMO, and SARS-CoV-2 pneumonia progressing
to hypoxic respiratory failure is exceedingly rare in patients under 18. Other
relative contraindications to ECMO are also listed in Figure 1. We select the
first ICU stay within each patient’s hospital stay, and exclude patients who
died or were discharged within the first 48 hours of being admitted. This is
done to focus on the stage of critical care after initial entry when lower-risk
oxygen supplementation strategies (e.g., ventilation) are being performed, and,
methodologically, to provide a richer set of features for prediction. Table 1 and
Appendix Table 4 summarize characteristics of the cohorts.

Data Extraction The study cohorts are extracted using string matching on
diagnosis codes and subsequent clinician review. Features are merged through a
process of visualization, query, and physician review. This includes harmonizing
feature units, removing impossible values, and merging redundant data fields.
Additional details are in Appendix B. All features are combined into a fixed-
length vector, using the most recent value prior to 48 hours after ICU admission.
Before imputation, approximately half of the features had missingness below 5%,
and 80% of the features had missingness below 30%, however multiple variables
had high missingness (Appendix B). Missing values are imputed using MissForest
[25], which we find PEER is insensitive to (Appendix B).

Features Features are extracted from demographics, comorbidities, vitals,
physical exams, and lab findings routinely collected in critical care settings.
Numerical features are normalized, and categorical features are converted with
dummy variables. All variables in Tables 1 and 4 are provided to the model.

Outcomes Our primary outcome of interest is in-ICU mortality. Secondary
outcomes indicating decompensation are vasopressor use and mechanical venti-
lation use. For each outcome, we define the time to event as the time to first
outcome or censorship, where censorship corresponds to discharge from the ICU.

3 Methods

Lasso-Cox To predict patient survival, we use the Cox proportional hazards
model with L1 regularization, referred to as Lasso-Cox [24]. Lasso-Cox is chosen
for its ease of interpretation and calculation, owing to its selection of sparse
models.∗ For a patient with covariates x ∈ Rd, the predicted log hazard is β>x,
(higher hazard implies shorter survival time), where β ∈ Rd are coefficients that

can be interpreted as log hazard ratios. L1 regularization λ
∑d

j=1 |βj | is used to
encourage sparsity in β, where λ > 0 is a user-specified hyperparameter.

∗We also tried the Cox model with elastic-net regularization (combined L1 and L2
regularization) but found little to no gain in cross-validation concordance.
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Table 1: Demographics and outcomes of patients with viral or unspecified pneumonia
in eICU and MIMIC-III cohorts. Data are median (Q1-Q3) or count (% out of n).

Variable eICU (n = 3617) MIMIC (n = 937)
D

em
o
g
ra

p
h

ic
s

Age, years 58.0 (48.0-64.0) 54.5 (44.1-62.7)
18-30 225 (6.2%) 83 (8.9%)
30-39 277 (7.7%) 94 (10.0%)
40-49 500 (13.8%) 159 (17.0%)
50-59 1064 (29.4%) 281 (30.0%)
60-70 1546 (42.7%) 320 (34.2%)

Male 1949 (53.9%) 542 (57.8%)
Female 1663 (46.0%) 395 (42.2%)

O
u

t.

Deceased 270 (7.5%) 94 (10.0%)
Vasopressors administered 589 (16.3%) 389 (41.5%)
Ventilator used 1835 (50.7%) 758 (80.9%)

Evaluation Metrics To evaluate model performance, we consider concordance
and calibration. Concordance (c-index) is a common measure of goodness-of-fit
in survival models [12], defined as the fraction of pairs of subjects whose survival
times are correctly ordered by a prediction algorithm, among all pairs that can
be ordered. Confidence intervals are computed using 1000 bootstrapped samples.
We evaluate calibration by plotting the Kaplan-Meier observed survival prob-
ability versus the predicted survival probability. We construct our calibration
plots (Figure 3) [29] with 1000 bootstrap resamplings for internal calibration.
Both internal and external calibrations use 5 groups for 7 days.†

Experimental Setup The eICU cohort is divided into a training set (70% of
the data, n=2537) and test set (30%, n=1080). The eICU training set is used for
model development, whereas the eICU test set and entirety of the MIMIC cohort
are used for model evaluation. Throughout our evaluation, we compare our risk
score (PEER) to three pneumonia risk scores: CURB-65 [26], PSI/PORT [8],
and SMART-COP [6]; and one COVID-19 risk score: GOQ [10].

Model selection We select λ via 10-fold cross validation and grid search on
the eICU training set to maximize concordance subject to sufficient sparsity. We
observe that λ = 0.01 gives the best trade-off between concordance (0.73) and
number of features selected (18), as a 0.01 increase in concordance corresponds
to 10 additional non-zero features. To check the stability of this hyperparameter
choice, we impute our data using ten random seeds and run 10-fold cross vali-
dation on the resulting datasets. Across all runs, λ = 0.01 achieves concordance
of approximately 0.73 and selects similar features and coefficients. Additional
details about grid search, the concordance and sparsity tradeoff, and robust se-
lection of coefficients can be found in Appendix B. Code for data extraction and
all model results is available at https://github.com/hlzhou/peer-score.

†We plot at day 7 instead of 30 because censorship level is too high beyond a week.

https://github.com/hlzhou/peer-score


Mortality Risk Score for Patients with Viral or Unspecified Pneumonia 5

Viral/	unspecified	
pneumonia	patients	

(n=17,390)

Included	(n=9,500)

Excluded	(n=7,890)
patients	over	70,	

under	18,	or	not	reported

Excluded	(n=2,882)
patients	with	surgery,	stroke,
intracranial	hemorrhage,
cancer,	liver	disease,	renal

failure,	congestive	heart	failureIncluded	(n=6,618)

ICU	stays	from	
eICU	database	
(n=200,859) Excluded	(n=183,469)

non-pneumonia	and
bacterial	pneumonia	visits

Excluded	(n=530)
ICU	stays	after	the	
patient's	first	one

Cohort	used	in	study
(n=3,617)

Excluded	(n=2,471)
patients	discharged	
in	the	first	48	hours

Included	(n=6,088)

(a) eICU cohort selection

Viral/	unspecified	
pneumonia	patients

(n=4,572)

Included	(n=2,348)

Excluded	(n=2,224)
patients	over	70	
or	age	not	reported

Excluded	(n=945)
patients	with	surgery,	stroke,
intracranial	hemorrhage,
disseminated	intravascular

coagulation,	liver	disease,	renal
failure,	congestive	heart	failureIncluded	(n=1,403)

ICU	stays	from	
MIMIC	database	

(n=46,476)

Included	(n=967)

Excluded	(n=41,904)
non-pneumonia	and

bacterial	pneumonia	visits

Excluded	(n=436)
ICU	stays	after	the	patient's	

first	one	and	patients
discharged	in	the	first	48	hours

Cohort	used	in	study
(n=937)

Excluded	(n=30)
patients	under	18

(b) MIMIC-III cohort selection

Fig. 1: Inclusion and exclusion criteria for cohorts extracted from eICU and MIMIC.
Disseminated intravascular coagulation was highly missing from eICU.

4 Results

The hazard ratios from Lasso-Cox with λ = 0.01 are displayed in Table 2. For
easy calculation of the PEER score, we also provide a nomogram (Figure 2)‡.

The PEER score achieves concordance greater than or comparable to that
of existing risk scores on all datasets (Table 3). On the eICU test set, PEER
achieves the highest concordance among the risk scores, 0.77. On MIMIC, the
maximum concordance degrades to 0.66, achieved by PEER and SMART-COP.
The PEER calibration curves (Figure 3) show one high risk group separate from
low risk groups. While predicted survival of the high risk group is overestimated
in the training set, it is within confidence intervals in both test sets.

We define low and high risk subpopulations by thresholding our model’s
predicted risks on the training set at the 90th percentile. Each group’s Kaplan-
Meier survival curves are plotted over a 30-day period (Figure 4). For the first
week, the low and high risk curves are clearly distinct (Figure 4), with respective
survival proportions 0.68 and 0.95 on eICU test, and 0.75 and 0.95 on MIMIC.
Beyond the first week, censorship grows quickly and there is less data, resulting
in increased uncertainty. Compared to low and high risk curves derived from
related risk scores, those of the PEER score are the most separated (Appendix
B). Secondary indicators of decompensation (i.e. ventilator and vasopressor use)
are also more common in the high risk group than the low risk group (Figure 5).

‡To compute risk, look up a patient’s values in the nomogram, match it to points
listed across the top, add them up, and look up the total in the scale across the bottom.
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Table 2: Hazard ratios (HR) for the Lasso-Cox model, i.e. the PEER score. HR and
95% confidence intervals (CI) are reported on normalized data. Means and standard
deviations used for scaling are included for reference.

Feature HR (95% CI) mean std. dev.

Age (years) 1.22 (1.04 – 1.43) 54.5 12.5
Heart rate (beats per minute) 1.13 (0.984 – 1.3) 89.4 17.8
Systolic blood pressure (mmHg) 0.928 (0.755 – 1.14) 122 22
Diastolic blood pressure (mmHg) 0.996 (0.745 – 1.33) 67.7 15.1
Mean arterial pressure (mmHg) 0.926 (0.673 – 1.27) 83.7 17.9
Glasgow Coma Scale 0.93 (0.803 – 1.08) 11.3 3.26
White blood cells (thousands/µL) 0.984 (0.871 – 1.11) 12.9 8.91
Platelets (thousands/µL) 0.924 (0.79 – 1.08) 208 108
Red blood cell dist. width (%) 1.24 (1.08 – 1.43) 15.8 2.47
Neutrophils (%) 0.972 (0.853 – 1.11) 79.1 13
Blood urea nitrogen (mg/dL) 1.07 (0.937 – 1.23) 25.1 19.5
Aspartate aminotransferase (units/L) 1.12 (1.06 – 1.18) 143 774
Direct bilirubin (mg/L) 1.03 (0.935 – 1.13) 0.385 0.816
Albumin (g/dL) 0.954 (0.82 – 1.11) 2.65 0.636
Troponin (ng/mL) 1.06 (0.985 – 1.14) 1.07 3.85
Prothrombin time (sec) 1.05 (0.909 – 1.2) 16.6 6.75
pH 0.856 (0.75 – 0.977) 7.38 0.0713
Arterial oxygen saturation (mmHg) 0.787 (0.723 – 0.856) 95.8 4.12

Points
0 10 20 30 40 50 60 70 80 90 100

WBCs
30Platelets

900 700 500 300 100RDW
10 12 14 16 18 20 22 24 26 28 30 32 34 36Neutrophils

100 40 0BUN
0 40 80 120 160pH_minus_7

0.65 0.55 0.45 0.35 0.25 0.15 0.05DBili
0 2 4 6 8 12 16 20Albumin
5 4 3 2 1PT
0 20 40 60 80 100 120AST
0 1000 2500 4000Troponin
0 10 20 30 40 50 60 70 80 90Age
15 25 35 45 55 65HR
40 60 80 100 120 140 160 180 200SaO2

100 95 90 85 80 75 70 65 60 55GCS
15 10 6sBP

200 160 120 80 40dBP
180MAP
200 160 120 80 40 0Total Points

0 50 100 150 200 250 300Linear Predictor
−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.530 days Overall Survival Probability

0.050.20.40.60.70.80.9

Fig. 2: Nomogram for manual calculation of the PEER score.
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Table 3: Concordances (and 95% confidence intervals) of the PEER score, CURB-65,
PSI/PORT, SMART-COP, and GOQ.

Score Train eICU Test eICU MIMIC

PEER (ours) 0.77 (0.72 - 0.81) 0.77 (0.69 - 0.83) 0.66 (0.57 - 0.74)
CURB-65 [26] 0.66 (0.61 - 0.70) 0.62 (0.55 - 0.69) 0.59 (0.52 - 0.66)
PSI/PORT [8] 0.71 (0.66 - 0.76) 0.71 (0.63 - 0.78) 0.62 (0.55 - 0.69)
SMART-COP [6] 0.69 (0.64 - 0.73) 0.73 (0.67 - 0.80) 0.66 (0.59 - 0.72)
GOQ [10] 0.67 (0.63 - 0.71) 0.62 (0.54 - 0.70) 0.58 (0.50 - 0.66)

(a) Train eICU (b) Test eICU (c) MIMIC

Fig. 3: Calibration plots with 95% confidence intervals.

Fig. 4: Kaplan-Meier survival curves of high vs. low risk groups in train eICU, test
eICU, and MIMIC. Shaded regions are the 95% confidence intervals.

(a) vasopressor (b) ventilator

Fig. 5: Proportion of each subgroup that received vasopressors or ventilators.
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5 Discussion

The PEER score achieves greater or comparable concordance to baselines on the
eICU (in-domain) and MIMIC (out-of-domain) test sets. Lasso-Cox selects 18
features, making for easy computation. Qualitatively, the score is consistent with
clinical intuition. SaO2, associated with poorer oxygenation status, is predictive
of decompensation. Old age is predictive of death. Red blood cell distribution
width, associated with expanded release of immature red blood cells in response
to insufficient oxygen delivery to tissues, is also a strong risk factor for death with
COVID-19 [9]. However, the hazard ratios themselves should be interpreted with
caution as three variables (pH, prothrombin time, and age) violate the propor-
tional hazards assumption, and L1 regularization shrinks coefficients towards 0.

Stratifying each cohort into high and low risk subpopulations based the
PEER score, we observe a clear separation in their survival curves (Figure 4)
across all three datasets. Additionally, secondary indicators of decompensation
(e.g. vasopressor and ventilator use) are more prevalent in the high risk group
(Figure 5). Calibration plots for PEER also show a high risk group separated
from the rest (Figure 3). While the survival probability of the high risk group is
overestimated on the eICU training set, it is within error bars on all test sets.

For ECMO allocation, practically, accurate ranking of risk, as measured by
concordance, may be more important than the precise probabilities predicted.
The PEER score outperforms other risk scores on the eICU test set, but there
is a decline in performance on the MIMIC test set, and the performance of
PEER becomes comparable to that of SMART-COP. One possible reason for this
decline is that in MIMIC, an important feature for PEER, the arterial oxygen
saturation (SaO2), has 72.6% missingness. In contrast, it has 1.5% missingness
in eICU. This demonstrates the importance of thinking critically about how our
risk score, which was trained on the eICU cohort and depends on 18 specific
features, generalizes to the population to which the score is being applied.

Limitations and Future Work Importantly our cohort is defined not by
COVID-19 positive pneumonia patients but instead by viral or unspecified pneu-
monia patients who are ECMO-eligible. While our risk score demonstrates good
discriminative ability and is interpretable, there are several additional decision-
making considerations beyond the scope of this paper. Clinicians interested in
applying the risk score to COVID-19 pneumonia should consider how represen-
tative this population is of their own. Because ECMO is a constrained resource,
there are also ethical questions about who should get treatment. This risk score
does not attempt to address these questions, but simply provides relevant in-
formation to those making such decisions. More broadly, we hope to provide
this risk score as a potential resource for future SARS-like diseases that require
ECMO consideration.
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[25] Stekhoven, D.J., Bühlmann, P.: MissForest—non-parametric missing value
imputation for mixed-type data. Bioinformatics 28(1), 112–118 (10 2011)

[26] W, L., M, V.D.E., et al.: Defining community acquired pneumonia sever-
ity on presentation to hospital: An international derivation and validation
study. Thorax 58(5), 377–382 (2003)

[27] Wang, D., Hu, B., et al.: Clinical characteristics of 138 hospitalized patients
with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA
- Journal of the American Medical Association 323(11), 1061–1069 (2020)

[28] World Health Organization, et al.: Clinical management of severe acute
respiratory infection (sari) when COVID-19 disease is suspected: interim
guidance, 13 March 2020. Tech. rep. (2020)

[29] Xiao, N., Xu, Q.S., Li, M.Z.: hdnom: Building nomograms for penalized
Cox models with high-dimensional survival data. bioRxiv (2016)

[30] Yang, X., Yu, Y., et al.: Clinical course and outcomes of critically ill pa-
tients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered,
retrospective, observational study. The Lancet Respiratory Medicine (2020)

[31] Zhou, F., Yu, T., et al.: Clinical course and risk factors for mortality of
adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort
study. The Lancet (2020)

[32] Zimmerman, J.E., Kramer, A.A., et al.: Acute physiology and chronic health
evaluation (apache) iv: hospital mortality assessment for today’s critically
ill patients. Critical Care Medicine 34(5), 1297–1310 (2006)



Mortality Risk Score for Patients with Viral or Unspecified Pneumonia 11

A Summary Characteristics

Table 4: Summary characteristics per cohort, with median (Q1-Q3) or count (% of n).

Variable eICU (n = 3617) MIMIC (n = 937)

P
h
y
si

ca
l

ex
a
m

fi
n

d
in

g
s

Orientation
oriented 1121 (31.0%) 411 (43.9%)
confused 1287 (35.6%) 76 (8.1%)
Temperature (◦C) 36.9 (36.6-37.3) 37.2 (36.6-37.7)
Heart rate (beats per minute) 89.0 (77.0-101.0) 90.0 (78.0-104.0)
Respiratory rate (breaths per minute) 20.0 (17.0-25.0) 20.0 (16.0-25.0)
Systolic blood pressure (mmHg) 120.0 (106.0-136.0) 118.0 (104.0-134.0)
Diastolic blood pressure (mmHg) 66.0 (57.0-76.0) 63.0 (54.0-72.0)
Mean arterial pressure (mmHg) 81.0 (72.0-93.0) 79.0 (71.0-90.0)
Glasgow Coma Scale 14.0 (10.0-15.0) 14.0 (9.0-15.0)

L
a
b

o
ra

to
ry

fi
n

d
in

g
s

(A
b

b
re

va
ti

o
n

s:
C

o
a
g
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Red blood cells (millions/µL) 3.5 (3.0-4.0) 3.4 (3.0-3.8)
White blood cells (thousands/µL) 11.0 (7.9-15.6) 11.0 (8.0-15.1)
Platelets (thousands/µL) 193.0 (136.0-261.0) 199.0 (128.8-276.0)
Hematocrit (%) 31.1 (27.2-35.6) 30.2 (27.0-33.6)
Red blood cell dist. width (%) 15.2 (14.0-16.8) 14.8 (13.8-16.4)
Mean corpuscular volume (fL) 90.4 (86.0-95.0) 89.0 (85.0-93.0)
Mean corpuscular hemoglobin/ MCH (pg) 29.7 (27.9-31.2) 30.2 (28.7-31.6)
MCH concentration (g/dL) 32.7 (31.7-33.6) 33.8 (32.8-34.8)
Neutrophils (%) 82.0 (73.3-89.0) 82.3 (73.8-88.5)
Lymphocytes (%) 8.4 (5.0-14.0) 9.5 (5.8-15.7)
Monocytes (%) 6.0 (3.7-8.6) 4.0 (2.7-5.9)
Eosinophils (%) 0.1 (0.0-1.0) 0.4 (0.0-1.2)
Basophils (%) 0.0 (0.0-0.3) 0.1 (0.0-0.3)
Band cells (%) 8.0 (3.0-17.0) 0.0 (0.0-5.0)
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Sodium (mmol/L) 139.0 (136.0-142.0) 139.0 (136.0-142.0)
Potassium (mmol/L) 3.9 (3.6-4.3) 3.9 (3.6-4.3)
Chloride (mmol/L) 105.0 (101.0-109.0) 105.0 (101.0-109.0)
Bicarbonate (mmol/L) 25.0 (22.0-28.0) 26.0 (23.0-29.0)
Blood urea nitrogen (mg/dL) 19.0 (12.0-33.0) 17.0 (11.0-28.0)
Creatinine (mg/dL) 0.8 (0.6-1.4) 0.8 (0.6-1.3)
Glucose (mg/dL) 131.0 (105.0-165.0) 124.0 (104.5-151.5)
Aspartate aminotransferase (units/L) 30.0 (19.0-57.0) 37.0 (22.0-70.0)
Alanine aminotransferase (units/L) 27.0 (16.0-47.0) 28.0 (18.0-52.0)
Alkaline phosphatase (units/L) 84.0 (62.0-117.0) 85.0 (62.0-121.0)
Direct bilirubin (mg/L) 0.2 (0.1-0.5) 0.6 (0.2-2.2)
Total bilirubin (mg/L) 0.5 (0.3-0.8) 0.6 (0.4-1.1)
Total protein (g/dL) 6.0 (5.3-6.7) 6.1 (5.3-7.0)
Calcium (mg/dL) 8.2 (7.7-8.6) 8.2 (7.8-8.6)
Albumin (g/dL) 2.6 (2.2-3.1) 3.0 (2.6-3.5)
Troponin (ng/mL) 0.1 (0.0-0.2) 0.0 (0.0-0.3)
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Prothrombin time (sec) 14.5 (12.7-16.7) 13.9 (13.0-15.3)
Partial thromboplastin time (sec) 33.0 (28.5-41.0) 30.2 (26.6-36.9)
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. pH 7.39 (7.33-7.43) 7.41 (7.36-7.45)
Partial pressure of oxygen (mmHg) 83.0 (68.0-111.0) 97.0 (73.5-127.5)
Arterial oxygen saturation (mmHg) 96.0 (94.0-99.0) 97.0 (95.0-98.0)
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